Lowering bone mineral affinity of bisphosphonates as a therapeutic strategy to optimize skeletal tumor growth inhibition in vivo.
نویسندگان
چکیده
Bisphosphonates bind avidly to bone mineral and are potent inhibitors of osteoclast-mediated bone destruction. They also exhibit antitumor activity in vitro. Here, we used a mouse model of human breast cancer bone metastasis to examine the effects of risedronate and NE-10790, a phosphonocarboxylate analogue of the bisphosphonate risedronate, on osteolysis and tumor growth. Osteolysis was measured by radiography and histomorphometry. Tumor burden was measured by fluorescence imaging and histomorphometry. NE-10790 had a 70-fold lower bone mineral affinity compared with risedronate. It was 7-fold and 8,800-fold less potent than risedronate at reducing, respectively, breast cancer cell viability in vitro and bone loss in ovariectomized animals. We next showed that risedronate given at a low dosage in animals bearing human B02-GFP breast tumors reduced osteolysis by inhibiting bone resorption, whereas therapy with higher doses also inhibited skeletal tumor burden. Conversely, therapy with NE-10790 substantially reduced skeletal tumor growth at a dosage that did not inhibit osteolysis, a higher dosage being able to also reduce bone destruction. The in vivo antitumor activity of NE-10790 was restricted to bone because it did not inhibit the growth of subcutaneous B02-GFP tumor xenografts nor the formation of B16-F10 melanoma lung metastases. Moreover, NE-10790, in combination with risedronate, reduced both osteolysis and skeletal tumor burden, whereas NE-10790 or risedronate alone only decreased either tumor burden or osteolysis, respectively. In conclusion, our study shows that decreasing the bone mineral affinity of bisphosphonates is an effective therapeutic strategy to inhibit skeletal tumor growth in vivo.
منابع مشابه
Pharmacokinetic profile of bisphosphonates in the treatment of metabolic bone disorders.
The pharmacokinetic profile of bisphosphonates is complex and depends on their potency in inhibiting bone resorption through their cellular effects and on the physicochemical action related to the interaction of these compounds with bone matrix. Amino-substituted bisphosphonates exert a more potent cellular effect on osteoclast via the inhibition of the mevalonate pathway, whereas non-nitrogen ...
متن کاملIbadronate may prevent colorectal carcinogenesis in mice with ulcerative colitis.
An increased incidence of colorectal carcinoma is known to occur in patients with ulcerative colitis, which displays a cycle of recurrence-remission in the colorectal mucosa. Repeated oral doses of 3% dextran sulfate sodium subsequent to a single intraperitoneal injection of azoxymethane induces chronic ulcerative colitis, resulting in an increased incidence of high-grade dysplasia and submucos...
متن کاملThe Pharmacological Profile of a Novel Highly Potent Bisphosphonate, OX14 (1‐Fluoro‐2‐(Imidazo‐[1,2‐α]Pyridin‐3‐yl)‐Ethyl‐Bisphosphonate)
Bisphosphonates are widely used in the treatment of clinical disorders characterized by increased bone resorption, including osteoporosis, Paget's disease, and the skeletal complications of malignancy. The antiresorptive potency of the nitrogen-containing bisphosphonates on bone in vivo is now recognized to depend upon two key properties, namely mineral binding affinity and inhibitory activity ...
متن کاملIn vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies
Objective(s): Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF) is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs) are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size ...
متن کاملInterference with the microenvironmental support impairs the de novo formation of bone metastases in vivo.
Interference with the microenvironmental growth support is an attractive therapeutic strategy for repressing metastatic tumor growth. Bone is a highly dynamic tissue that is continuously remodeled by bone resorption and subsequent bone formation. Growth factors supporting bone metastatic growth are released especially during bone resorption. Differently from most other tissues, drugs that can l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 68 21 شماره
صفحات -
تاریخ انتشار 2008